

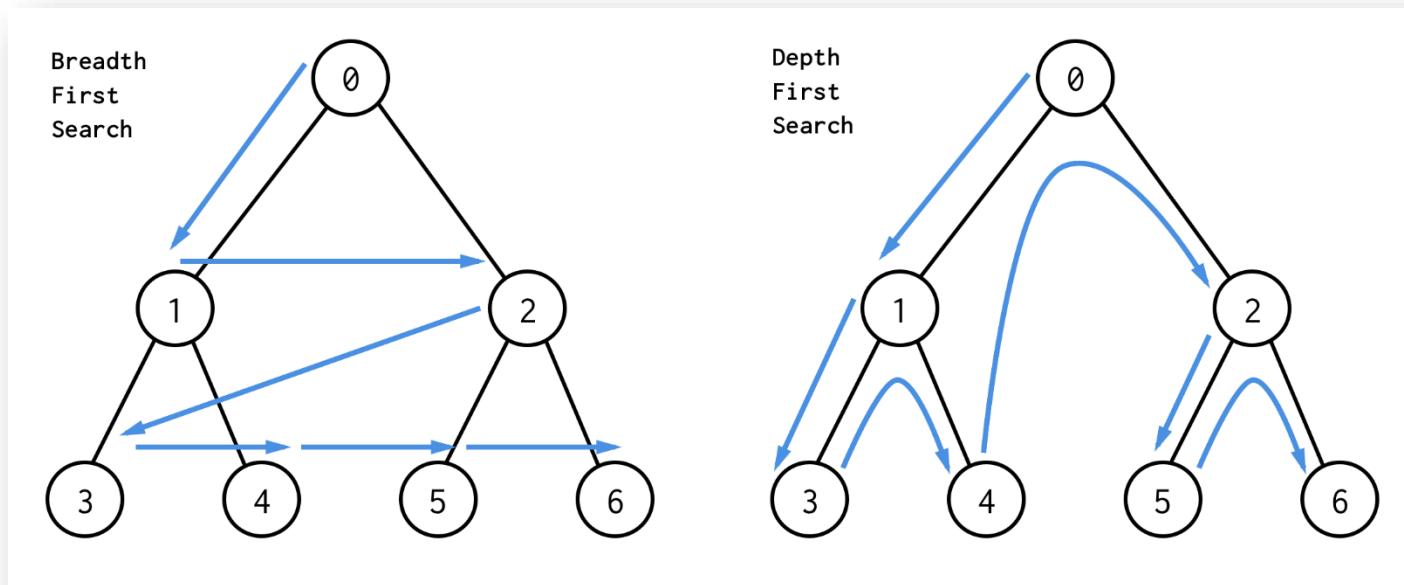
Strongly Connected Components

Kuan-Yu Chen (陳冠宇)

2019/05/22 @ TR-310-1, NTUST

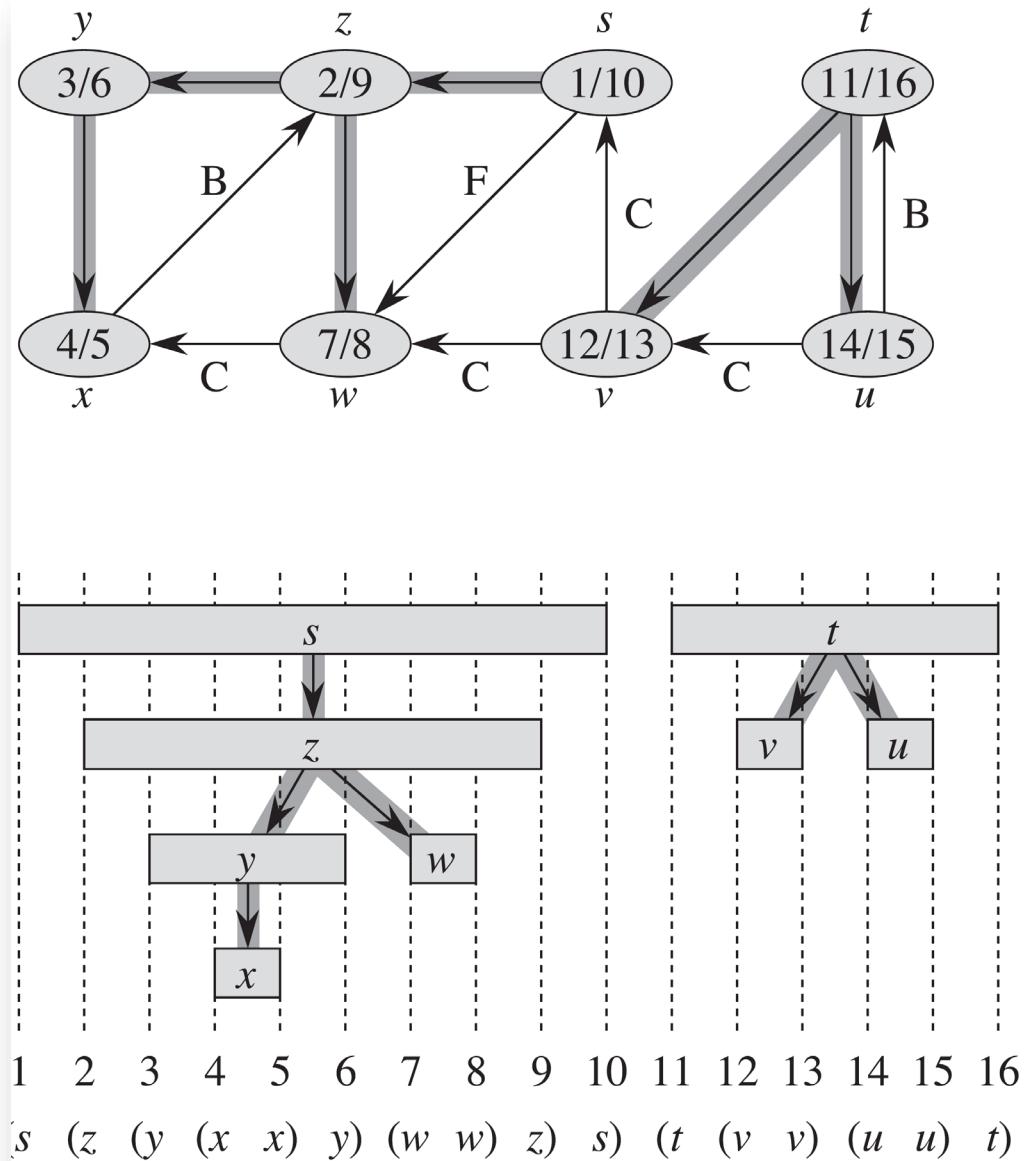
Review

- Breadth-first search
 - BFS uses a **queue** as an auxiliary data structure to store nodes for further processing
- Depth-first search
 - DFS uses a **stack** to store nodes for further processing



DFS and Parenthesis Structure.

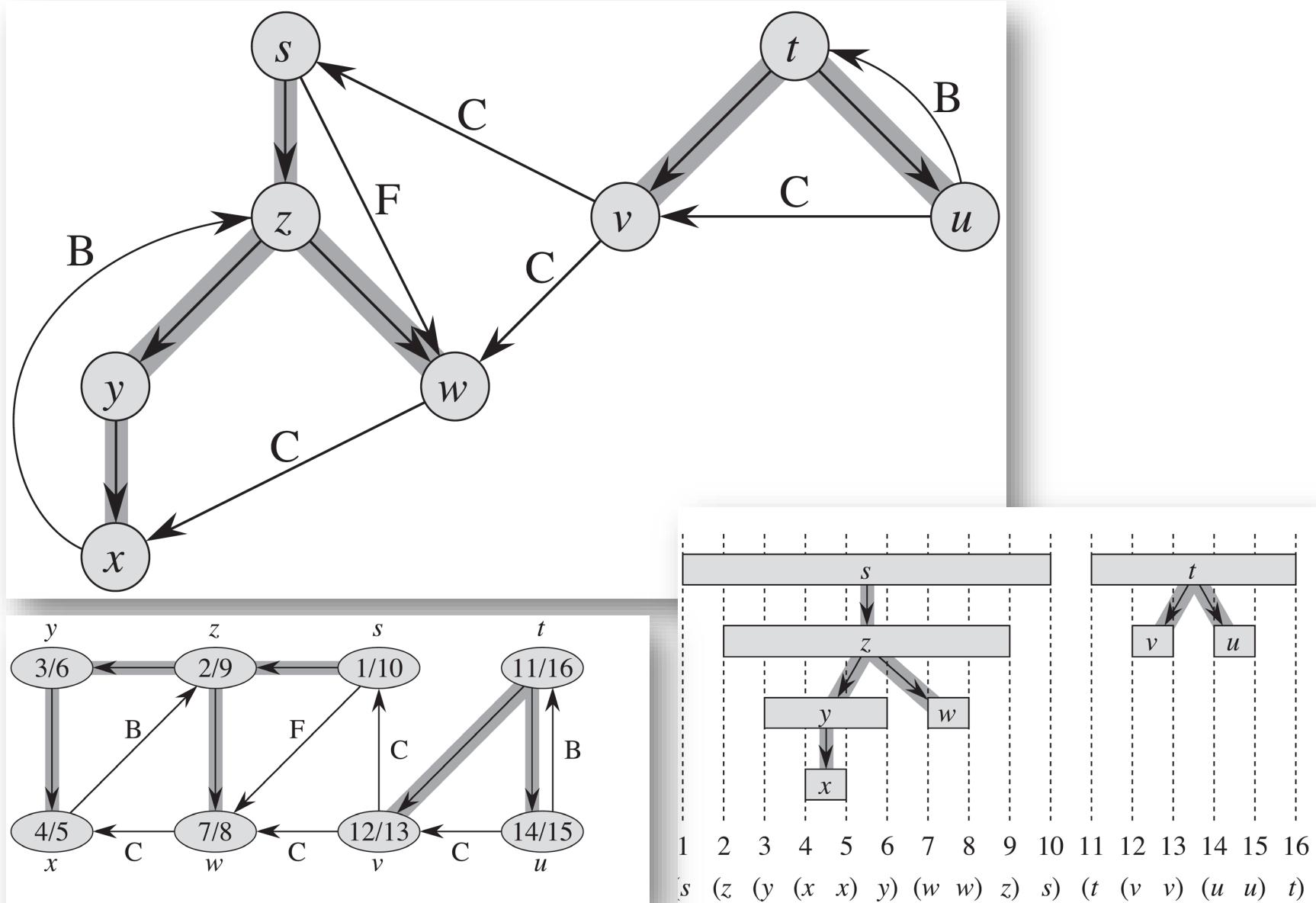
- An important property of depth-first search is that discovery and finishing times have ***parenthesis structure***



DFS and Parenthesis Structure..

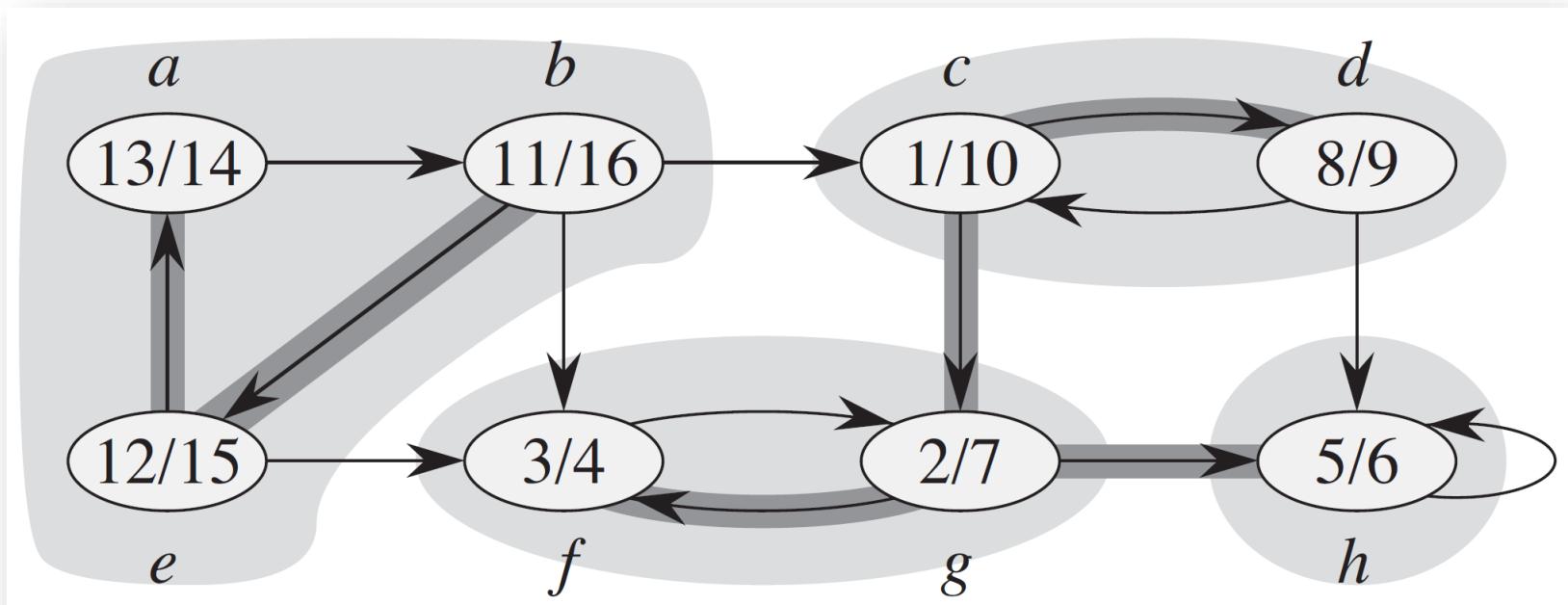
- Parenthesis theorem
 - In any depth-first search of a (directed or undirected) graph $G = (V, E)$, for any two vertices u and v , exactly one of the following three conditions holds
 - The intervals $[u.d, u.f]$ and $[v.d, v.f]$ are entirely disjoint, and neither u nor v is a descendant of the other in the depth-first forest
 - The interval $[u.d, u.f]$ is contained entirely within the interval $[v.d, v.f]$, and u is a descendant of v in a depth-first tree
 - The interval $[v.d, v.f]$ is contained entirely within the interval $[u.d, u.f]$, and v is a descendant of u in a depth-first tree

DFS and Parenthesis Structure...



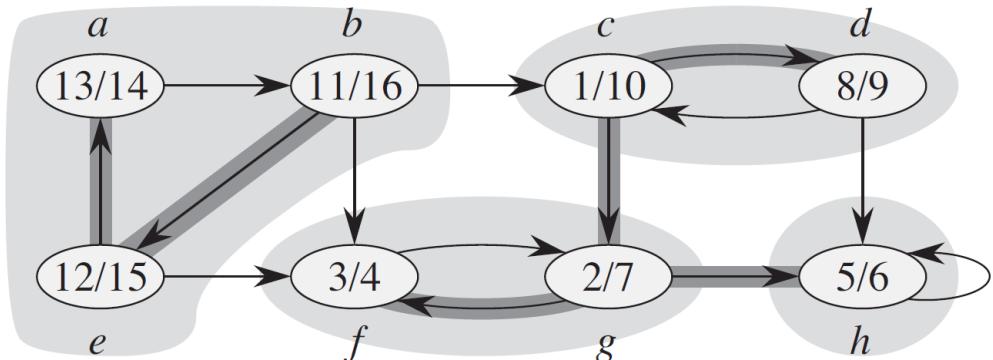
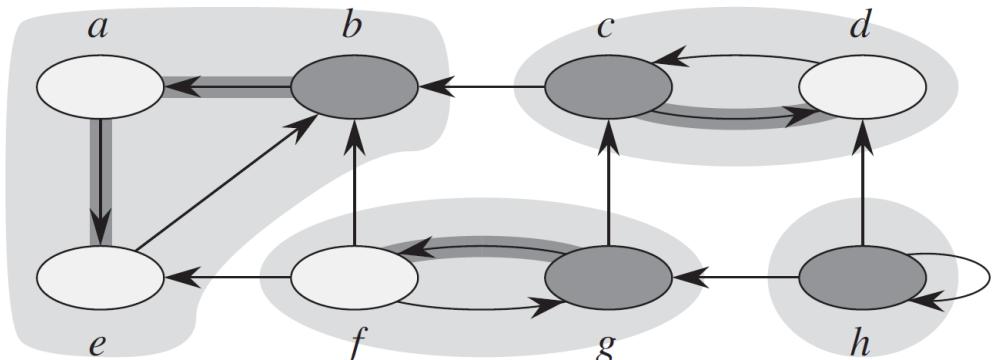
Strongly Connected Components.

- A strongly connected component of a directed graph $G = (V, E)$ is a **maximal set** of vertices $C \subseteq V$ such that for every pair of vertices u and v in C , we have both $u \rightsquigarrow v$ and $v \rightsquigarrow u$
 - Vertices u and v are reachable from each other



Strongly Connected Components..

- If we create a graph $G^T = (V, E^T)$, which is transpose of G
 - It is interesting to observe that G and G^T have exactly the same strongly connected components
 - E^T consists of the edges of G with their directions reversed
 - u and v are reachable from each other in G if and only if they are reachable from each other in G^T

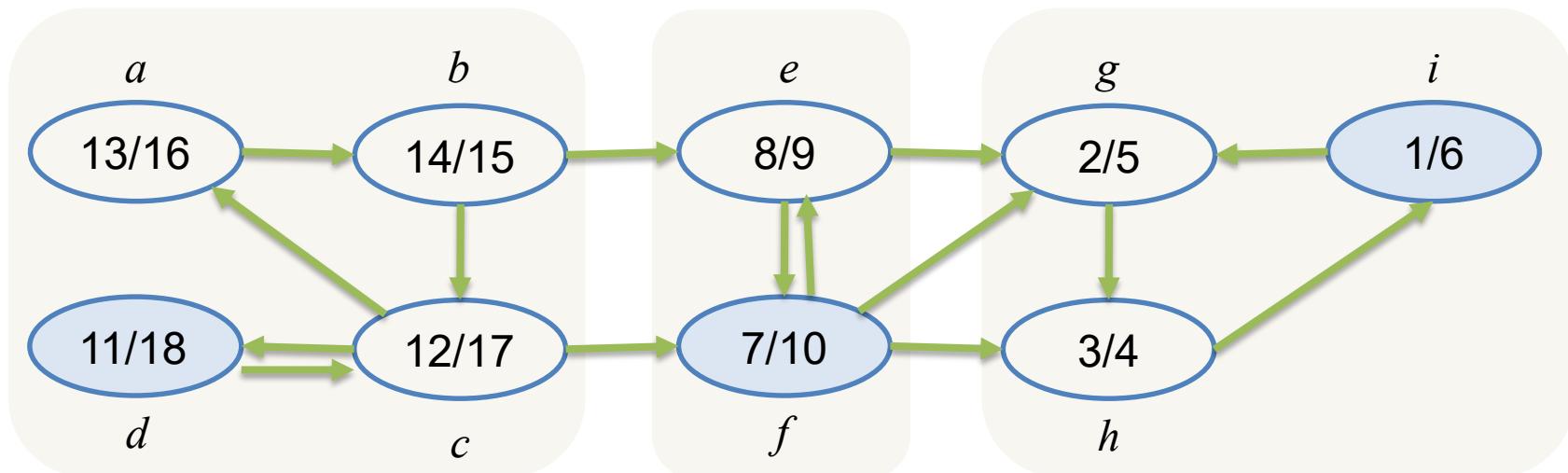


Strongly Connected Components...

- Lemma:
 - Let C and C' be distinct strongly connected components in directed graph $G = (V, E)$, let $u, v \in C$ and $u', v' \in C'$, and suppose that G contains a path $u \rightsquigarrow u'$. Then G cannot also contain a path $v' \rightsquigarrow v$
- Prove:
 - If G contains a path $v' \rightsquigarrow v$, then it contains paths $v' \rightsquigarrow v \rightsquigarrow u$ and $u \rightsquigarrow u' \rightsquigarrow v'$
 - Thus, u and v' are reachable from each other, thereby contradicting the assumption that C and C' are distinct strongly connected components

SCC by DFS.

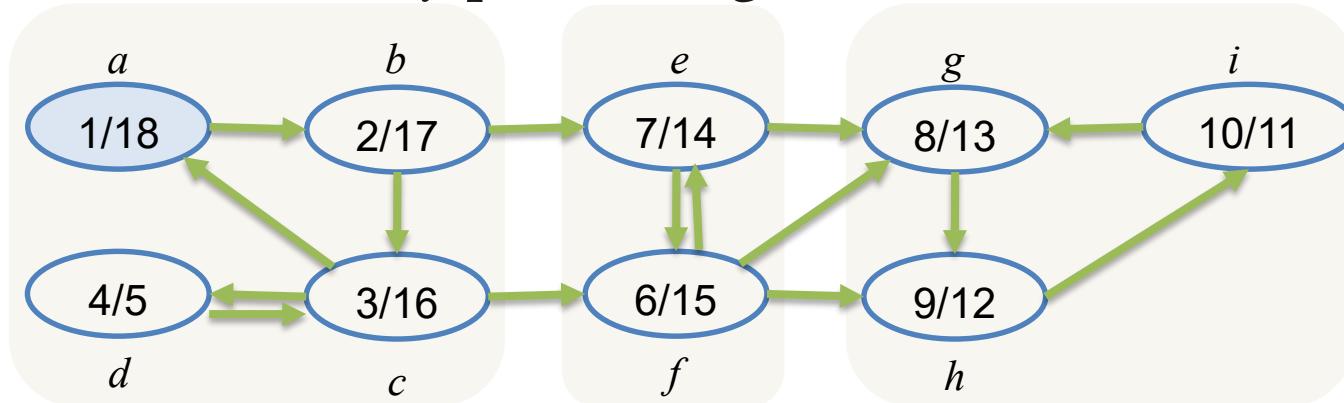
- SCC can be found by performing a DFS?



1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
<i>i</i>						<i>f</i>									<i>d</i>		
	<i>g</i>						<i>e</i>							<i>c</i>			
		<i>h</i>											<i>a</i>			<i>b</i>	

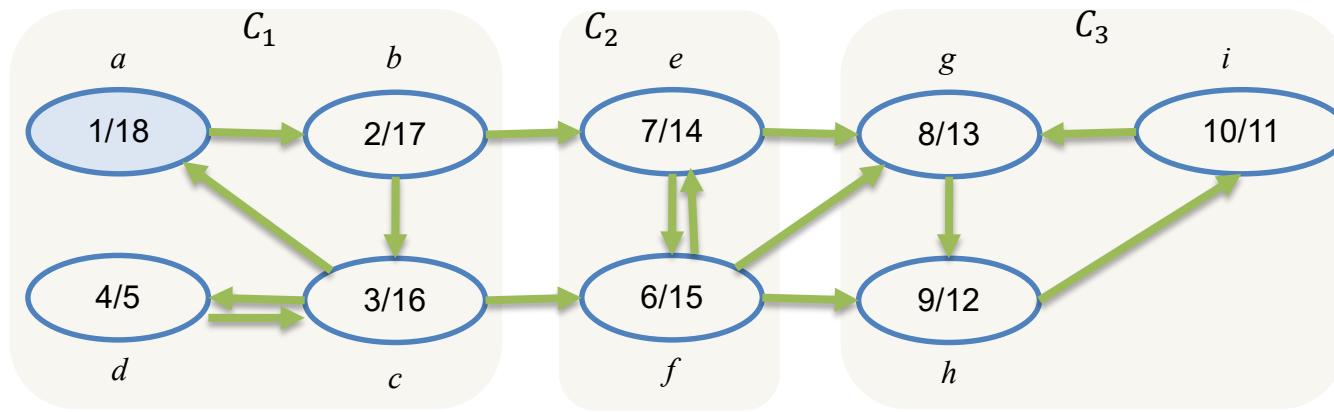
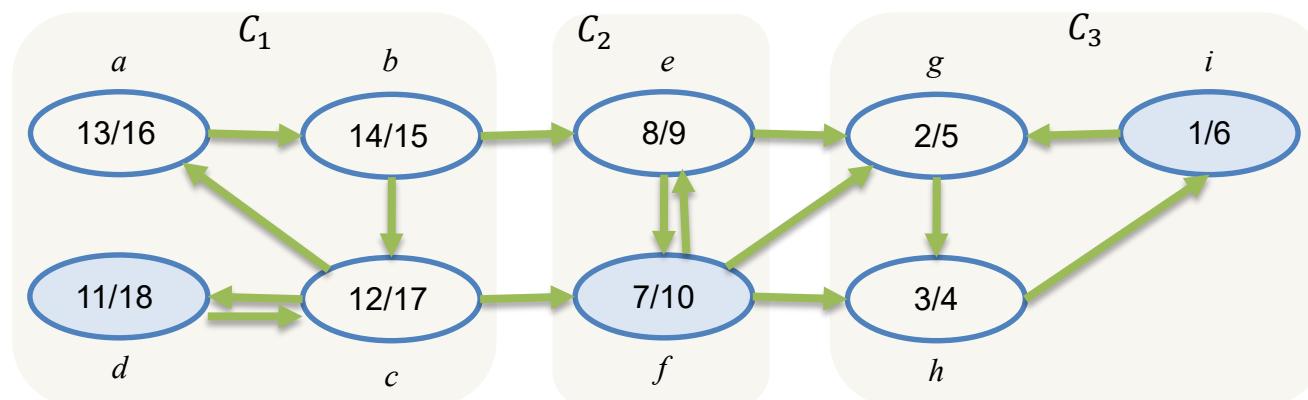
SCC by DFS..

- SCC can be found by performing a DFS?



SCC by DFS...

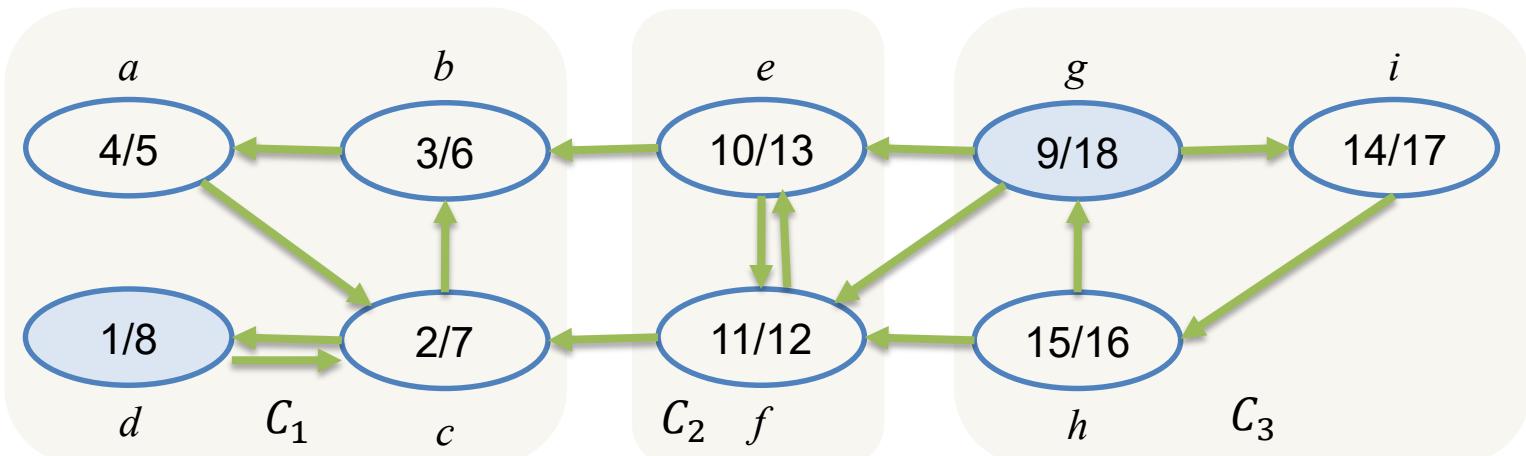
- Observation1
 - The maximum finish time of C_1, C_2 and C_3 is always $C_1 > C_2 > C_3$
 - If we want to construct SCC by using DFS, we should choose vertex by $C_3 \rightarrow C_2 \rightarrow C_1$



SCC by DFS...

- Observation2

- If the maximum finish time of a DAG G , which contains three components C_1, C_2 and C_3 , is $C_1 > C_2 > C_3$
- The maximum finish time of G^T is always $C_1 < C_2 < C_3$



SCC by DFS....

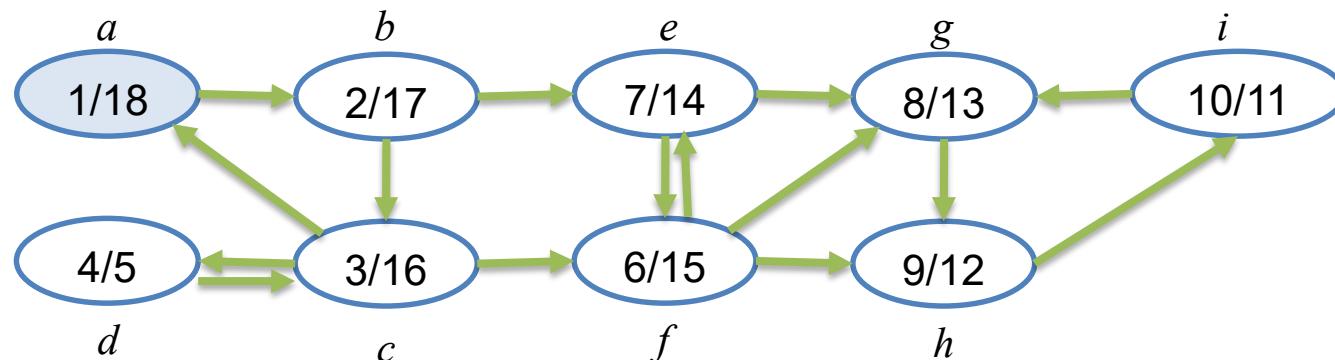
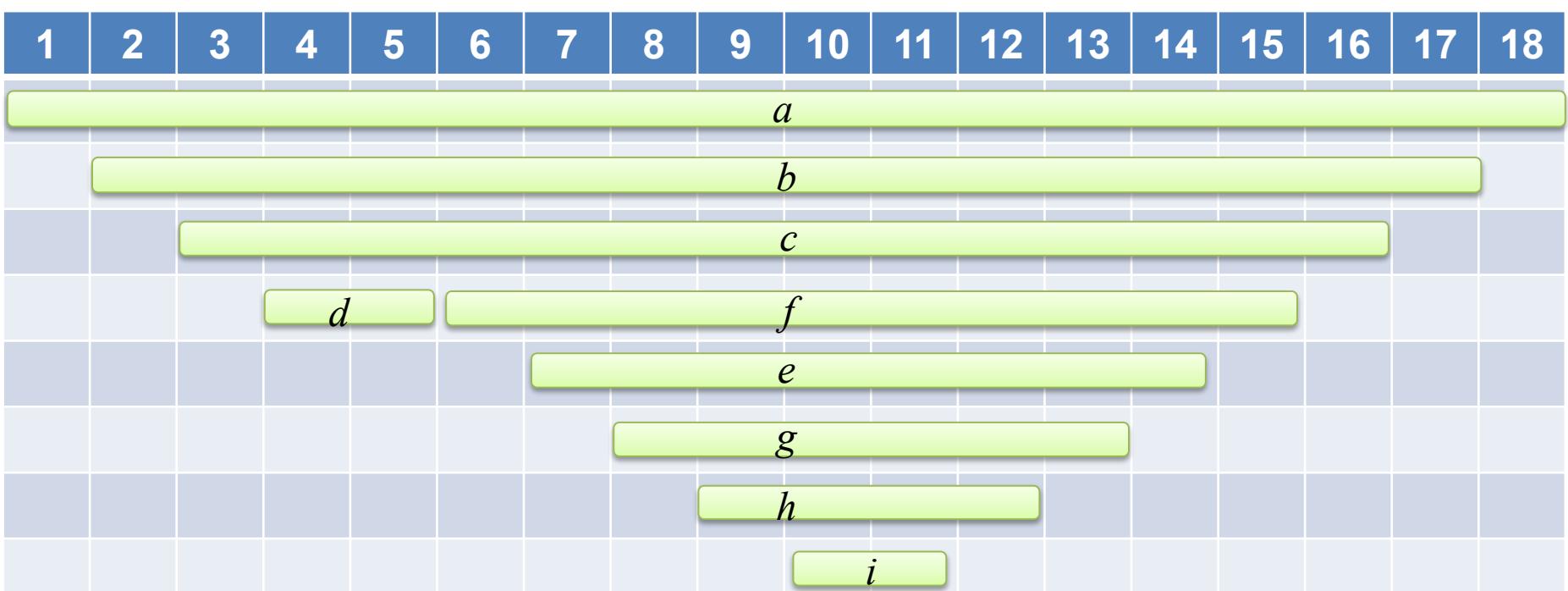
- By considering observations 1 and 2

STRONGLY-CONNECTED-COMPONENTS (G)

- 1 call $\text{DFS}(G)$ to compute finishing times $u.f$ for each vertex u
- 2 compute G^T
- 3 call $\text{DFS}(G^T)$, but in the main loop of DFS, consider the vertices in order of decreasing $u.f$ (as computed in line 1)
- 4 output the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component

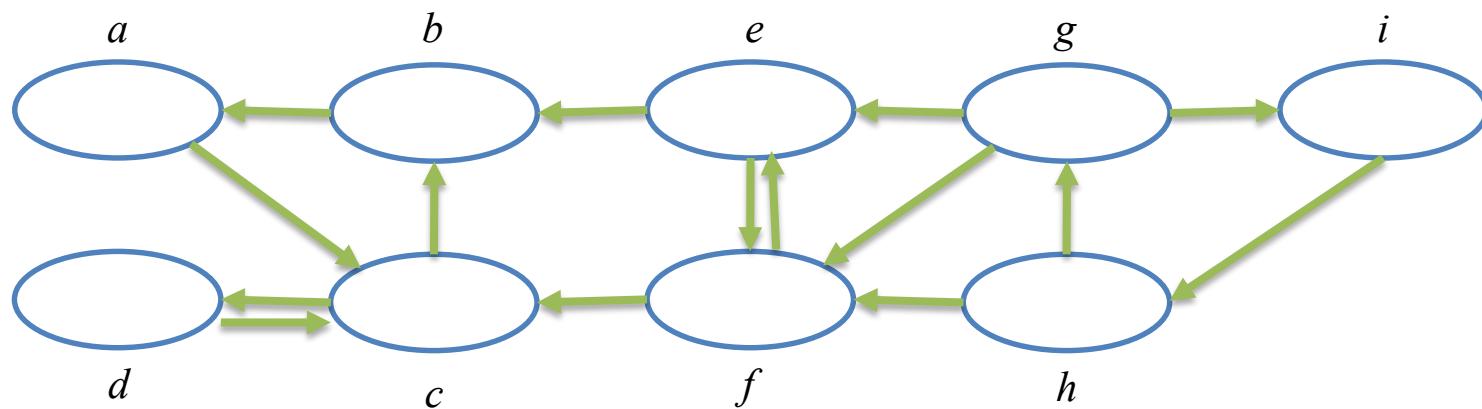
Example.

- Step1: $DFS(G)$



Example..

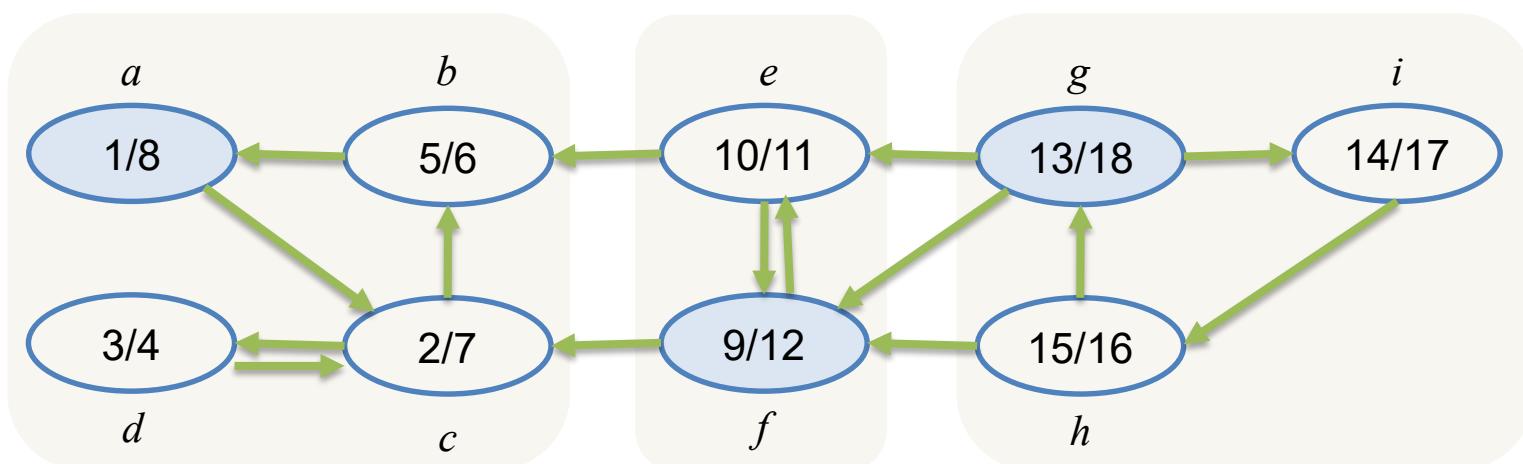
- Step2: Construct G^T



Example...

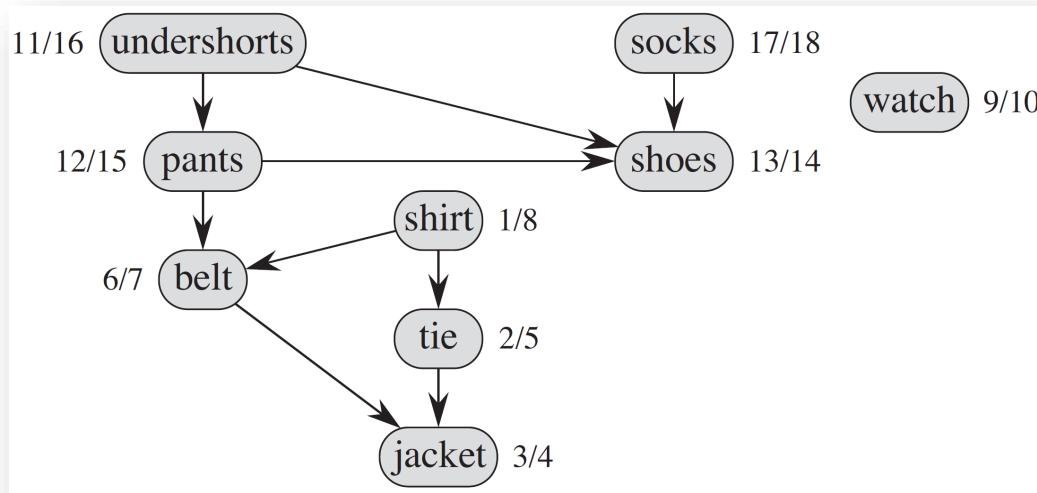
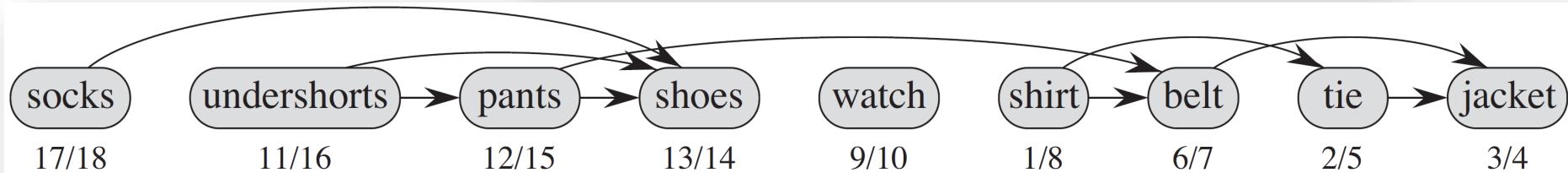
- Step3: $DFS(G^T)$, but in the main loop of DFS, consider the vertices in order of decreasing $u.f$

$$a \rightarrow b \rightarrow c \rightarrow f \rightarrow e \rightarrow g \rightarrow h \rightarrow i \rightarrow d$$



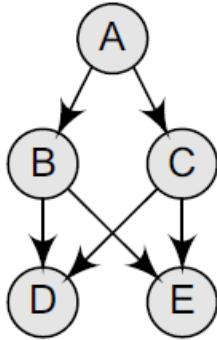
Topologocal Sort.

- Depth-first search can be used to perform a topological sort of a directed acyclic graph (DAG)
 - A *topological sort* of a DAG $G = (V, E)$ is a linear ordering of all its vertices
 - If G contains an edge (u, v) , then u appears before v in the ordering



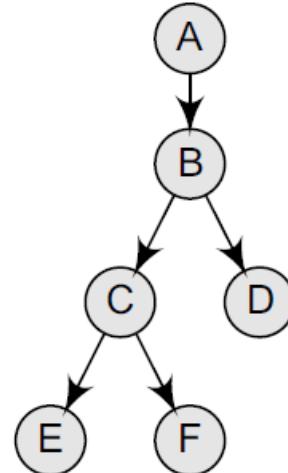
Topological Sorting..

- Every DAG has one or more number of topological sorts



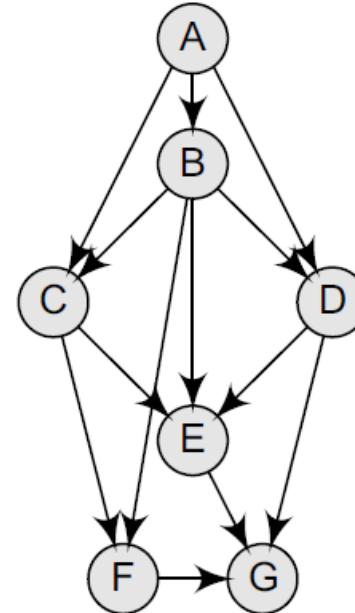
Topological sort
can be given as:

- A, B, C, D, E
- A, B, C, E, D
- A, C, B, D, E
- A, C, B, E, D



Topological sort
can be given as:

- A, B, D, C, E, F
- A, B, D, C, F, E
- A, B, C, D, E, F
- A, B, C, D, F, E



Topological sort
can be given as:

- A, B, C, F, D, E, C
- A, B, C, D, E, F, G
- A, B, C, D, F, E, G
- A, B, D, C, E, F, G

Questions?

kychen@mail.ntust.edu.tw